Design of Software Fault Prediction Model Using BR Technique
نویسندگان
چکیده
منابع مشابه
An Efficient Software Fault Prediction Model using Cluster based Classification
Predicting fault -prone software components is an economically important activity due to limited budget allocation for software testing. In recent years data mining techniques are used to predict the software faults .In this research, we present a cluster based fault prediction classifiers which increases the probability of detection. The expectation from a predictor is to get very high probabi...
متن کاملEvaluation of Classifiers in Software Fault-Proneness Prediction
Reliability of software counts on its fault-prone modules. This means that the less software consists of fault-prone units the more we may trust it. Therefore, if we are able to predict the number of fault-prone modules of software, it will be possible to judge the software reliability. In predicting software fault-prone modules, one of the contributing features is software metric by which one ...
متن کاملDesign and Development of Software Fault Prediction Model to Enhance the Software Quality Level
Software fault prediction models play an important role in software quality assurance. They identify software subsystems (modules, components, classes, or files) which are likely to contain faults. These subsystems, in turn, receive additional resources for verification and validation activities. Fault prediction models are binary classifiers typically developed using one of the supervised lear...
متن کاملSoftware Fault-proneness Prediction using Random Forest
Many metric-based classification models have been developed and applied to software fault-proneness prediction. This paper presents a novel prediction model using Random Forest classifier. Random Forest (RF) can be a promising candidate for software quality prediction because it is one of the most accurate classification algorithms available and has strengths in noise handling and efficient run...
متن کاملA Hybrid Model of Soft Computing Technique for Software Fault Prediction
Software fault prediction plays a vital role in software quality assurance, identifying the faulty modules to better concentrate on those modules and helps to improve the quality of the software. With increasing complexity of software now a day’s feature selection is important to remove the redundant, irrelevant and erroneous data from the dataset. In general, Feature selection is done mainly b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Computer Science
سال: 2015
ISSN: 1877-0509
DOI: 10.1016/j.procs.2015.02.154